Operational Realities of Running DNSSEC

Haya Shulman

Fachbereich Informatik Technische Universität Darmstadt

25/6/2014

DNSSEC Finally... Slowly Taking Off

- Many resolvers signal ``DNSSEC OK´´
 - Only <5% validate
- Many (important) zones got signed
 - Forward DNS: Root, >62% TLDS, but only <1% SLDs
 - Reverse DNS (IPv4): arpa, in-addr.arpa but only <1% subdomains

Only Lack of Motivation?

- How difficult is it to deploy DNSSEC?
- A?www.foo.bar Root ns.bar. A 5.6.7.8 Name Server Many dependencies and ... actors 3 A?www.foo.bar 1 A?www.foo.bar Domai ns.foo.bar A 1.2.3.5 Client www.foo.bar A 1.2.3.4 ns.bar TLD Name Server Recursive 5.6.7.8 A?www.foo.bar 100. bar A 1.2.3. Resolver Local Area Network **Our focus: DNS servers** Domain ns.foo.bar SLD Name Server

1.2.3.5

25/6/2014

Recursive Auth-Name Server (RANS)

25/6/2014

Recursive Auth-Name Server (RANS)

Sometimes a Chain of Intermediate Proxy Resolvers...

25/6/2014

Recursive Auth-Name Server (RANS)

Detecting RANSes

- 1. Send NXD query \rightarrow Measure latency τ
- 2. Resend same query \rightarrow Measure latency λ
- 3. If $\lambda << \tau \rightarrow RANS$
 - Typically $| \lambda \tau | > 30$ ms
 - **Different ASes**

 \rightarrow Send query to our domain

25/6/2014

Challenges of DNSSEC Adoption

- How common? Quite common...
 - >38% domains in Alexa-50K
 - >32% RANSes, >6% ORANSes

- \rightarrow Significant part of DNS infrastructure
- Distribution of RANSes among Alexa-50K domains

Measure ORANSes Readiness for DNSSEC

- 1. Send request for a record in our signed zone \rightarrow check if server receives
- 2. Send signed response \rightarrow check if client receives

Measure non-open (RANSes) with side-channels

see paper

25/6/2014

RANSes Measurement Challenges

- Differentiate failure with EDNS vs DNSSEC
 - Support of DO in EDNS ≠ support of DNSSEC
- Differentiate failure with request vs response
- Identify who fails with DNSSEC
 - 1st node? 2nd node? ... Nth node? the name server?
- See paper for details
 - Also for measurements in TLDs, and in reverse DNS
- So, what is the situation?

Infrastructure Challenges

- Legacy devices = obstacle to DNSSEC adoption!!
- >69% of Alexa-50K open RANSes cannot support DNSSEC
 - > 39% fail with DNSSEC
 (FRMTERROR/SRVFAIL)
 - > 30% strip DNSSEC
- > 18% do not support EDNS
- Higher % of RANSes
- Similar for reverse DNS

Is it Worth the Effort?

- DNSSEC prevents attacks
 - On-path (MitM) attacks (NSA, GCHQ,...?)
 - Off-path attacks [HS12,HS13a-c,SW14]
 - Vulnerable name servers
- DNSSEC provides evidences
 - Enables forensic analysis, detection of attacks
- DNSSEC would facilitate security protocols
 - ROVER, DANE...
- Can we do it? → Yes We Can!!

Cipher-Suite Negotiation for DNSSEC

Amir Herzberg and Haya Shulman

Computer Science Dept.Fachbereich InformatikBar-Ilan UniversityTU Darmstadt

25/6/2014

Herzberg and Shulman: Cipher-suite negotiation for DNSSEC

Servers Send Key/SIGs for ALL Supported Algs. → Large Responses!

100

- Intermediate devices
 - E.g., firewalls
- Transition to TCP?
 - Not all support
 - and overhead

25/6/2014

- Low motivation to support shorter algs
 - Mandatory support of RSA
 - More algs increase responses sizes

Herzberg and Shulman: Cipher-suite negotiation for DNSSEC

Cipher-Suite Negotiation Signal Ciphers in EDNS

- Resolvers algs and priorities (new options in EDNS)
- Servers compute optimal algorithm
 - Responses signed according to that option
 - To prevent downgrages sign the supported ciphers with KSK
- Simple extension to [RFC6975]

25/6/2014

Herzberg and Shulman: Cipher-suite negotiation for DNSSEC

Cipher-Suite Negotiation

- But, EDNS is transport layer (hop-by-hop)
- Intermediate caches break end-to-end cipher negotiation
 - Legacy devices cannot process new options
 → break cipher-suite negotiation
 - Supporting devices serve cached signatures
 → may not be the priority/ciphers supported by
 requesting clients

Cipher-Suite Negotiation

- Idea: signal in application layer
- Client concatenates ciphers
 as subdomains to query
- 5 RSA/SHA1
 - RSA/SHA1-NSEC3-SHA1
 - 13 ECDSA Curve P-256 with SHA-256

algs.delimiter.domain: 5.13.7._cs_.foo.bar

- How can client know server's algs/priorities?
 - ightarrow server signals priorities in a DNSKEY record
 - New alg. number for cipher options

Conclusions

- Intermediate devices impede deployment of new mechanisms
 - DNSSEC, cipher-suite negotiation, ...
- But, delegation of DNS functionality is common
 - Intermediaries are likely to persist
- More effort is required to speed adoption of DNSSEC!!

Questions?

Thank you!

25/6/2014